Connect with us

Jamb

JAMB Chemistry Syllabus 2021/22 UTME Exam: Read & Download PDF

JAMB Chemistry Syllabus 2021/22 UTME Exam: Read & Download PDF.

Jamb Chemistry Syllabus

Jamb Chemistry Syllabus: Hello Viewer in this article i would like to share the latest & updated syllabus for Jamb Chemistry, Are you among those that are getting prepared for the upcoming UTME examination if yes, have you been searching for Jamb Chemistry Syllabus if yes, then i guess this article is for you:

Are you participating in the 2021/22 United Tertiary Matriculation Examination, then start preparing now, without wasting much of you time i will highlight the first step you need to take:

  1. Choice a course
  2. Make a research on the course
  3. Search for the O’level requirement of the course
  4. Then Lastly, make research on the Jamb Subject combination of the course if Chemistry is among then you are good to go (Note: All Science courses usually as Chemistry in their Jamb subject combination.

CLICK HERE TO DOWNLOAD JAMB CHEMISTRY PAST QUESTION

Jamb Chemistry Syllabus 2021 General Objective

The aim of the Unified Tertiary Matriculation Examination (UTME) syllabus in Chemistry is to prepare the candidates for the Board’s examination. It is designed to test their achievement of the course objectives, which are to:
(i) apply the basic principles governing scientific methods in new situations;
(ii) interpret scientific data;
(iii) deduce the relationships between chemistry and other sciences;
(iv) apply the knowledge of chemistry to industry and everyday life.

CLICK HERE TO DOWNLOAD JAMB SYLLABUS FOR CHEMISTRY

1. SEPARATION OF MIXTURES AND PURIFICATION OF CHEMICAL SUBSTANCE 

(a) Pure and impure substances
(b) Boiling and melting points.
(c) Elements, compounds and mixtures
(d) Chemical and physical changes.
(e) Separation processes: evaporation, simple and fractional distillation, sublimation, filtration, crystallization, paper and column chromatography, simple and fractional crystallization.

Candidates should be able to:
i) distinguish between pure and impure substances;
ii) use boiling and melting points as criteria for purity of chemical substances;
iii) distinguish between elements, compounds and mixture;
iv) differentiate between chemical and physical changes;
v) identify the properties of the components of a mixture;
vi) specify the principle involved in each separation method.

2. CHEMICAL COMBINATION

Stoichiometry, laws of definite and multiple proportions, law of conservation of matter, Gay Lussac’s law of combining volumes, Avogadro’s law; chemical symbols, formulae, equations and their uses, relative atomic mass based on 12C=12, the mole concept and Avogadro’s number.

Candidates should be able to:
(i) perform simple calculations involving formulae, equations/chemical composition and the mole concept;
(ii) deduce the chemical laws from given expressions/statements;
(iii) interpret data based on these laws;
(iv) interpret graphical representations related to these laws.

3. KINETIC THEORY OF MATTER & GAS LAW

(a) An outline of the kinetic theory of matter, melting, vaporization and reverse processes; melting and boiling explained in terms of molecular motion and Brownian movement.

(b) The laws of Boyle, Charles, Graham and Dalton (law of partial pressure); combined gas law, molar volume and atomicity of gases

Candidates should be able to:
(i) apply the theory to distinguish between solids, liquids and gases;
(ii) deduce reasons for change of state;
(iii) draw inferences based on molecular motion;
(iv) deduce chemical laws form given expressions/ statements;
(v) interpret graphical representations related to these laws;
(vi) perform simple calculations based on these laws and the relationship between the vapour density of gases and the relative molecular mass.

4. ATOMIC STRUCTURE & BONDING

(a) (i)The concept of atoms, molecules and ions, the works of Dalton, Millikan, Rutherford, Mosely, Thompson and Bohr. Simple hydrogen spectrum, Ionization of gases illustrating the electron as fundamental particle of matter.
(ii) Atomic structure, electron configuration, atomic number, mass number and isotopes; specific examples should be drawn from elements of atomic number 1 to 20. Shapes
of s and p orbitals.

(b) The periodic table and periodicity of elements, presentation of the periodic table with a view to recognizing families of elements e.g. alkali metals, halogens, the noble gases and transition metals. The variation of the following properties should be noticed: ionization energy, ionic radii, electron affinity and electronegativity.

(c) Chemical bonding: Electrovalency and covalency, the electron configuration of elements and their tendency to attain the noble gas structure. Hydrogen bonding and metallic bonding as special types of electrovalency and covalency respectively; coordinate bond as a type of covalent bond as illustrated by complexes like [Fe(CN)6]3-, [Fe(CN)6]4-, [Cu(NH3)4]2+and [Ag(NH3)2]+; van der Waals’ forces should be mentioned as a special type of bonding forces.

(d) Shapes of simple molecules: linear ((H2, 02, C12,HCI and CO2), non-linear (H2O) and
tetrahedral; (CH4)

(b) Nuclear Chemistry:
(i) Radioactivity (elementary treatment only)
(ii) Nuclear reactions. Simple equations, uses and applications of natural and artificial radioactivity.

Candidates should be able to:
(i) distinguish between atom, molecules and ions;
(ii) assess the contributions of these scientists to the development of the atomic structure;
(iii) deduce the number of protons, neutrons and electrons from atomic and mass numbers of an atom;
(iv) apply the rules guiding the arrangement of electrons in an atom;
(v) relate isotopy to mass number;
(vi) perform simple calculations on relative atomic mass
(vii) determine the number of electrons in s and p atomic orbitals.
(viii) relate atomic number to the position of an element on the periodic table;
(ix) relate properties of groups of elements on the periodic table;
(x) identify reasons for variation in properties across the period.
(xi) differentiate between the different types of bonding.
(xii) deduce bond types based on electron configurations;
(xiii) relate the nature of bonding to properties of compounds;
(xiv) apply it in everyday chemistry;
(xv) differentiate between the various shapes of molecules
xvi) distinguish between ordinary chemical reaction and nuclear reaction;
(xvii) differentiate between natural and artificial radioactivity;
(xviii) compare the properties of the different types of nuclear radiations;
(xix) compute simple calculations on the half-life of a radioactive material;
(xx) balance simple nuclear equation;
(xxi) identify the various applications of radioactivity

5. AIR

The usual gaseous constituents – nitrogen, oxygen, water vapour, carbon (IV) oxide and the noble gases (argon and neon), proportion of oxygen in the air e.g. by burning phosphorus or by using alkaline pyrogallol, air as a mixture and some uses of the noble gas.

Candidates should be able to:
(i) deduce reason (s) for the existence of air as a mixture;
(ii) identify the principle involved in the separation of air components;
(iii) deduce reasons for the variation in the composition of air in the environment;
(iv) specify the uses of some of the constituents of air.

6. WATER

Composition by volume: Water as a solvent, atmospheric gases dissolved in water and their biological significance. Water as a product of the combustion of hydrogen. Hard and soft water: Temporary and permanent hardness and methods of softening hard water. Purification of town water supplies. Water of crystallization, efflorescence, deliquescence and hygroscopy. Examples of the substances exhibiting these properties and their uses.

Candidates should be able to:
(i) identify the various uses of water;
(ii) distinguish between the properties of hard and soft water;
(iii) determine the causes of hardness;
(iv) identify methods of removal of hardness;
(v) describe the processes involved in the purification of water for town supply;
(vi) distinguish between these phenomena;
(vii) identify the various compounds that exhibit these phenomena.

7. SOLUBILITY

(a) Unsaturated, saturated and supersaturated solutions. Solubility curves and simple deductions from them, (solubility defined in terms of mole per dm3) and simple calculations.

(b) Solvents for fats, oil and paints and the use of such solvents for the removal of stains.

(c) Suspensions and colloids: Harmattan haze and paints as examples of suspensions and fog, milk, aerosol spray and rubber solution as examples of colloids.

Candidates should be able to:
(i) distinguish between the different types of solutions;
(ii) interpret solubility curves;
(iii) calculate the amount of solute that can dissolve in a given amount of solvent at a given temperature;
(iv) deduce that solubility is temperature-dependent;
(v) classify solvents based on their uses;
(vi) differentiate between a true solution, suspension and colloids;
(vii) compare the properties of a true solution and a ‘false’ solution.
(viii) provide typical examples of suspensions and colloids.

8. ENVIRONMENTAL POLLUTION

(a) Sources and effects of pollutants.
(b) Air pollution: Examples of air pollutants such as H2S, CO, SO2, oxides of nitrogen, fluorocarbons and dust.
(c) Water pollution Sewage and oil pollution should be known.
(d) Soil pollution: Oil spillage, Biodegradable and non-biodegradable pollutants.

Candidates should be able to:
(i) identify the different types of pollution and pollutants;
(ii) classify pollutants as biodegradable and non-biodegradable;
(iii) assess the effects of pollution on the environment;
(iv) recommend measures for control of environment pollution.

9. ACIDS, BASE & SALT

(a) General characteristics and properties of acids, bases and salts. Acids/base indicators,
basicity of acids, normal, acidic, basic and double salts. An acid defined as a substance
whose aqueous solution furnishes H3O+ions or as a proton donor. Ethanoic, citric and tartaric acids as examples of naturally occurring organic acids, alums as examples of double salts, preparation of salts by neutralization, precipitation and action of acids on metals. Oxides and trioxocarbonate (IV) salts

(b) Qualitative comparison of the conductances of molar solutions of strong and weak acids and bases, relationship between conductance, amount of ions present and their relative mobilities.

(c) pH and pOH scale. pH defined as – log[H3O+]

(d) Acid/base titrations.

(e) Hydrolysis of salts: Simple examples such as NH4C1, AICI3, Na2CO3, CH3COONa to be mentioned.

Candidates should be able to:
(i) distinguish between the properties of acids and bases;
(ii) identify the different types of acids and bases;
(iii) differentiate between acidity and alkalinity using acid/base indicators;
(iv) identify the various methods of preparation of salts;
(v) classify different types of salts;
vi) relate degree of dissociation to strength of acids and bases;
(vii) relate degree of dissociation to conductance;
(viii) perform simple calculations on pH;
(ix) identify the appropriate acid-base indicator;
(x) interpret graphical representation of titration curves;
(xi) perform simple calculations based on the mole concept;
(xii) balance equations for the hydrolysis of salts;
(xiii) deduce the properties (acidic, basic, neutral) of the resultant solution.

10. OXIDATION AND REDUCTION

(a) Oxidation in terms of the addition of oxygen or removal of hydrogen.
(b) Reduction as removal of oxygen or addition of hydrogen.
(c) Oxidation and reduction in terms of electron transfer.
(d) Use of oxidation numbers. Oxidation and reduction treated as change in oxidation.
number and use of oxidation numbers in balancing simple equations. IUPAC nomenclature of inorganic compounds.
(e) Tests for oxidizing and reducing agents.

Candidates should be able to:
(i) identify the various forms of expressing oxidation and reduction;
(ii) classify chemical reactions in terms of oxidation or reduction;
(iii) balance redox reaction equations;
(iv) deduce the oxidation number of chemical species;
(v) compute the number of electron transfer in redox reactions;
(vi) identify the name of redox species using IUPAC nomenclature.
(vii) distinguish between oxidizing and reducing agents in redox reactions.

11. ELECTROLYSIS

(a) Electrolytes and non-electrolytes. Faraday’s laws of electrolysis.
(b) Electrolysis of dilute H2SO4, aqueous CuSO4, CuC12 solution, dilute and concentrated NaC1 solutions and fused NaC1 and factors affecting discharge of ions at the electrodes.
(c) Uses of electrolysis: Purification of metals e.g. copper and production of elements and compounds e.g. A1, Na, O2, Cl2 and NaOH.
(d) Electrochemical cells: Redox series (K, Na, Ca, Mg, AI, Zn, Fe, PbII, H, Cu, Hg, Au,)
half-cell reactions and electrode potentials. Simple calculations only.
(e) Corrosion as an electrolytic process, cathodic protection of metals, painting, electroplating and coating with grease or oil as ways of preventing iron from corrosion.

Candidates should be able to:
(i) identify between electrolytes and non-electrolytes;
(ii) perform calculations based on faraday as a mole of electrons.
(iii) identify suitable electrodes for different electrolytes.
(iv) specify the chemical reactions at the electrodes;
(v) determine the products at the electrodes;
(vi) identify the factors that affect the product of electrolysis;
(vii) specify the different areas of application of electrolysis;
(viii) identify the various electrochemical cells;
(ix) calculate electrode potentials using half- cell reaction equations;
(x) determine the different areas of applications of electrolytic processes;
(xi) apply the methods to protect metals.

12. ENERGY CHARGE

(a) Energy changes(∆H) accompanying physical and chemical changes: dissolution of substances in or reaction with water e.g. Na, NaOH,K, NH4, Cl. Endothermic (+∆H) and
exothermic (-∆H) reactions.
(b) Entropy as an order-disorder phenomenon: simple illustrations like mixing of gases and dissolution of salts.
(c) Spontaneity of reactions: ∆G0 = 0 as a criterion for equilibrium, ∆G greater or
less than zero as a criterion for non-spontaneity or spontaneity.

Candidates should be able to:
(i) determine the types of heat changes (∆H) in physical and chemical processes;
(ii) interpret graphical representations of heat changes;
(iii) relate the physical state of a substance to the degree of orderliness;
(iv) determine the conditions for spontaneity of a reaction ;
(v) relate (∆H), ∆S0 and ∆G0 as the driving forces for chemical reactions;
(vi) solve simple problems based on the relationships ∆G0= ∆H0-T∆S0)

CLICK HERE TO DOWNLOAD JAMB SYLLABUS FOR CHEMISTRY PDF

13. RATES OF CHEMICAL REACTION

(a) Elementary treatment of the following factors which can change the rate of a chemical
reaction:

(i) Temperature e.g. the reaction between HCI and Na2S2O3 or Mg and HCI
(ii) Concentration e.g. the reaction between HCl and Na2S2O3, HCl and marble and the iodine clock reactio1n, for gaseous systems, pressure may be used as concentration term.
(iii) Surface area e.g. the reaction between marble and HCI with marble in
(i) powdered form
(ii) lumps of the same mass.

(iv) Catalyst e.g. the decomposition of H2O2 or KCIO3 in the presence or absence of MnO2

(b) Concentration/time curves.
(c) Activation energy Qualitative treatment of Arrhenius’ law and the collision theory, effect of light on some reactions. e.g. halogenation of alkanes

Candidates should be able to:
(i) identify the factors that affect the rates of a chemical reaction;
(ii) determine the effects of these factors on the rate of reactions;
(iii) recommend ways of moderating these effects;
iv) examine the effect of concentration on the rate of a chemical reaction;
(v) describe how the rate of a chemical reaction is affected by surface area;
(vi) determine the types of catalysts suitable for different reactions.
(vii) interpret reaction rate curves;
(viii) solve simple problems on the rate of reactions;
(x) relate the rate of reaction to the kinetic theory of matter.
(xi) examine the significance of activation energy to chemical reactions.
(xi) deduce the value of activation energy (Ea) from reaction rate curves

14. CHEMICAL EQUILIBRUM

Reversible reactions and factors governing the equilibrium position. Dynamic equilibrium. Le Chatelier’s principle and equilibrium constant. Simple examples to include action of steam on iron and N2O4   2NO2. No calculation will be required

Candidates should be able to:
(i) identify the factors that affects the position of equilibrium of a chemical reaction;
(ii) predict the effects of each factor on the position of equilibrium.

Recommended Textbook For Jamb Chemistry Syllabus 

  • Ababio, O.Y. (2005). New School Chemistry for Senior Secondary Schools, (Third Edition),
    Onitsha: Africana FIRST Publishers Limited
  • Bajah, S.T. Teibo, B.O., Onwu, G and Obikwere, A. (1999). Senior Secondary Chemistry,
    Book 1, Lagos: Longman
  • Bajah, S.T., Teibo, B.O., Onwu, G and Obikwere, A. (2000). Senior Secondary Chemistry,
    Books 2 and 3, Lagos: Longman
  • Ohia, G.N.C., Adewoyin, F.A. and Akpan, B.B. (1997). Exam Focus Chemistry for WASSCE
    & JME: Ibadan: University Press Plc
  • STAN (1987). Chemistry for Senior Secondary Schools, Ibadan: Heinemann
  • Sylvester: O.O. (2004). A Comprehensive Practical Chemistry for Senior Secondary Schools,
    Ibadan: Evans
  • Uche, I.O., Adenuga, I.J. and Iwuagwu, S.L. (2003). Countdown to WASSCE/SSCE, NECO, JME Chemistry,
    Ibadan: Evans
  • Wisdomline Pass at Once JAMB.

CLICK HERE TO DOWNLOAD JAMB SYLLABUS FOR CHEMISTRY PDF

CLICK HERE FOR JAMB SYLLABUS (OTHER SUBJECT)

HOPE THIS ARTICLE IS HELPFUL? IF YOU HAVE ANY QUESTION FEEL FREE TO USE THE COMMENT BOX & MAKE SURE YOU SHARE THIS POST WITH A FRIEND.

THANKS FOR READING & KEEP VISITING.

21 Comments
Subscribe
Notify of
guest
21 Comments
Inline Feedbacks
View all comments
Peace Agbaji
Peace Agbaji
1 year ago

Thank you

lee daniel
lee daniel
1 year ago

its not complete there is no organic compound

timi
timi
1 year ago

thank you

Lady J
Lady J
1 year ago

Thanks and GOD bless

onele godswill
onele godswill
1 year ago

is it true jamb has been shiet

Juanna
Juanna
1 year ago

No Hydrocarbon

Fridausi
Fridausi
1 year ago

Thanks

Deborah
Deborah
1 year ago

I don’t think it is complete, there is no organic chemistry

Anonymous
Anonymous
1 year ago

Thanks

Diekololami
Diekololami
1 year ago

Will have to read this very well.
It’s helping, I pray questions come out from this 🙏

Nnaedozie Ritasbina chinelo
Nnaedozie Ritasbina chinelo
1 year ago

Pls are these where jamb questions will come from

timi
timi
1 year ago

It is not complete no organic chemistry metals and non metals

Deborah
Deborah
1 year ago

Pls is it where jamb question will be set from?

Jamb

JAMB Syllabus 2021/2022 For All Subject: View & Download PDF

JAMB Syllabus 2021/2022 For All Subject: View & Download PDF.

Jamb syllabus

JAMB Syllabus: Hello Viewer, welcome to ngedunews.com, In this article, I would like to discuss with you about JAMB 2021 Syllabus, have you been searching for the latest update/version of JAMB Syllabi then i guess you are at the right portal, this page is strictly created for Jamb 2021 Syllabus,

In case you are new to Jamb Syllabus, and you have been wondering what Jamb Syllabus is all about, is a sort of book which is made available in either Hard copy or Soft Copy for all subjects which contains all the Topics for each subject that an individual is expected to know and study on.

This is to inform the general public especially those who will be sitting for the JAMB 2021 Examination that JAMB Subject Syllabus for the 2021 session has been released and can be downloaded below:

JAMB 2021 Syllabus For All Subject (View & Get PDF) Below.

This Jamb Subject Syllabus is a direct expo of what you are to expect in the coming UTME 2020 Examination. It helps you prepare more and as well evaluate yourself before the examination date

JAMB Syllabus For Science Subjects:

JAMB Syllabus For Social Science Subject:

JAMB Syllabus For Arts Subject:

How To Use Jamb 2021 Syllabus

  • The syllabus is available in PDF. First, download the JAMB syllabus for your course of study.
  • Use a PDF application to access it.
  • On each subject you open, you will see the aim, after which is the topics/contents/notes and the Objective
  • Look at the topics/contents/notes and also check the objectives
  • Then scroll down to the end of the PDF and see the recommended textbooks
  • Look for one of the recommended textbooks and open to any topic you which to learn and study it by following the objectives.

CLICK HERE FOR JAMB LATEST NEWS & UPDATE.

HOPE THIS ARTICLE IS HELPFUL, IF YOU HAVE ANY QUESTIONS FEEL FREE TO USE THE COMMENT BOX.

MAKE SURE YOU SHARE WITH YOUR FRIENDS.

Continue Reading

Trending

Copyright © 2020 || Login Portals